I. SIGNALS AND SYSTEMS

• Signal Type

Continuous time and continuous amplitude

Discrete time and continuous amplitude

Discrete time and discrete amplitude

 Continuous time and continuous amplitude with uniform time steps (simplified-data signal)

 Continuous time and discrete amplitude with uniform time-steps

Sequences

Definition

• How to obtain sequences from signals

— Motivation:

Signals are usually processed by a computer. Since the computer understands only numbers and sequences of numbers, the signal has to be converted into a numerical sequence, i.e. it is sampled

→ i.e., it is sampled

Sampling period: T

Sampling frequency:

Basic Sequences

1) Unit impulse sequence

2) Constant sequence

3) Unit step sequence

4) Linear sequence

- Basic signals

1) Unit impulse signal

2) Constant signal

3) Unit step signal

4) Linear signal

• Signal and sequence shift operations

sequence shift

* Recall
$$\delta(n)$$
=

$$\delta(n-n_o)$$

* Example: plot $3\delta(2n+4)$

plot
$$u(n-6)$$

$$u(2n+4)$$

Signal shift

Conclusion: given x(t) representation

$$t_o >; x(t-t_o)$$

$$t_o >$$
; $x(t-t_o)$

- General description of any sequence

$$x(n) =$$

⇒ any sequence

$$x(n)=$$

Note: relationship between u(n) and $\delta(n)$

Periodic Sequences/Signals

— Definition: A sequence x(n) is said to be periodic if

$$x(n) =$$

Definition: A signal x(t) is said to be periodic if

$$x(t) =$$

— <u>Sinusoids</u>

* Sinusoidal signal

$$x(t) =$$

* Period of x(t) =

Sinusoidal sequence

* Assume we sample x(t) with the sampling interval T_0

$$x(n) =$$

Exponential Sequence

1) Real exponential sequence

*
$$\chi(n) =$$

* Commonly used exponential sequence

$$x(n) =$$

2) Complex exponential sequence (periodic)

$$x(n) =$$

* How to plot a complex exponential sequence?

* Is a complex exponential sequence always periodic?

Analog and digital frequency

$$x(t) =$$

*
$$x(n) = x(nT_s) =$$

- * Digital frequence $\theta =$
- * Question: What is the meaning of the Digital frequency?

* Example:
$$x(t) = 2 \cos (40\pi t + \pi/3)$$

 $T_s =$

- Plot x(t)
- Compute the period of x(t)
- Is $x(nT_s)$ periodic?
- Compute the digital frequency

Relationship between Analog and Digital Frequency Ranges

- Assume $\theta_0 < \theta < \theta_2$
- Recall $\theta =$
- Find the corresponding analog frequency range

• Sampling (Nyquist) Theorem

 Goal: The sampling theorem indicates how fast one must sample a continuous signal to be able to uniquely represent the continuous signal by its sampled version.

FIGURE 2.29(d) Result of sampling above Nyquist rate: sampling period of T = 0.4 ms or $I_s = 2500$ Hz

* Example: $x(n) = \cos(\theta n)$

- * Range of digital frequencies which may be distinguished from each other:
- * Application: if $0 < \theta < \pi$

What range does the corresponding analog frequency range have?

Nyquist Theorem

A sampled signal x(n) can be uniquely represented by equally spaced samples if the sampling frequency f_s is greater than $2f_{\text{max}}$, where f_{max} is the maximum frequency of the continuous signal x(t) generating x(n).

* Why is the Nyquist theorem important?